China Good quality OEM Belt Conveyor Pulley High Wear Resistance Head Ceramic Drive Tail Snub Bend Take up CZPT Grooved Rubber Lagging Drum Pulley pulley attachments

Product Description


Conveyor Pulley is
manufactured as per customer requirement,with main design under national standard,quality inspection focusing on shaft core,welded joint,rubber material and hardness,dynamic balance and so on for longer product life time.

Drive/Head Pulley – A conveyor pulley used for the purpose of driving a conveyor belt. Typically mounted in external bearings and driven by an external drive source.
Return/Tail Pulley – A conveyor pulley used for the purpose of redirecting a conveyor belt back to the drive pulley. Tail pulleys can utilize internal bearings or can be mounted in external bearings and are typically located at the end of the conveyor bed. Tail pulleys commonly serve the purpose of a Take-Up pulley on conveyors of shorter lengths.
Snub Pulley – A conveyor pulley used to increase belt wrap around a drive pulley, typically for the purpose of improving traction.
Take-Up Pulley – A conveyor pulley used to remove slack and provide tension to a conveyor belt. Take-Up pulleys are more common to conveyors of longer lengths.
Bend Pulley – A conveyor pulley used to redirect the belt and provide belt tension where bends occur in the conveyor system.

The specification of pulley:
Drive Drum: is the main component of power transmission. The drum can be divided into single drum (the angle of the belt to the drum is 210 ° ~ 230 °) , Double Drum (the angle of the belt to the drum is up to 350 °) and
multi-drum (used for high power) . 
Bend Drum: is used for changing the running direction of the conveyor belt or increasing the surrounding angle of the conveyor belt on the driving roller, and the roller adopts a smooth rubber surface . The drum shaft shall be forgings and shall be nondestructive tested and the inspection report shall be provided. 
The Various Surface of Pulley:
Conveyor pulley lagging is essential to improve conveyor belt performance, the combination of our pulley lagging can reduces belt slippage, improve tracking and extends life of belt, bearing & other components.

PLAIN LAGGING:This style of finish is suitable for any pulley in the conveyor system where watershed is not necessary. It provides additional protection against belt wear, therefore, increasing the life of the pulley.
DIAMOND GROOVE LAGGING:This is the standard pattern on all Specdrum lagged conveyor pulleys. It is primarily used for reversing conveyor drive pulleys. It is also often used to allow bi-directional pulley rotation, and the pattern allows water to be dispersed away from the belt.
HERRINGBONE LAGGING:The herringbone pattern’s grooves are in the direction of rotation, and offers superior tractive properties. Each groove allows water and other liquids to escape between the face of the drum pulley and the belt. Herringbone grooved pulleys are directional and should be applied to the conveyor in a manner in which the grooves point toward the direction of the belt travel.
CHEVRON LAGGING:Some customers specify that the points of the groove should meet – as done in Chevron styled lagging. As before with the herringbone style, this would be used on drive drum pulleys and should be fitted in the correct manner, so as to allow proper use of the pattern and water dispersion also.
CERAMIC LAGGING:The Ceramic tiles are moulded into the lagging which is then cold bonded to the drum pulley. This style of finish allows excellent traction and reduces slippage, meaning that the belt tension is lower and, therefore as a result, increases the life of the pulley.
WELD-ON STRIP LAGGING: Weld-On Strip Lagging can be applied to bi-directional pulleys, and also has a finish to allow the easy dispersion of water or any fluids between the drum pulley and the belt.

The Components of Pulley:
 

1. Drum or Shell:The drum is the portion of the pulley in direct contact with the belt. The shell is fabricated from either a rolled sheet of steel or from hollow steel tubing.
2.Diaphragm Plates: The diaphragm or end plates of a pulley are circular discs which are fabricated from thick steel plate and which are welded into the shell at each end, to strengthen the drum.The end plates are bored in their centre to accommodate the pulley Shaft and the hubs for the pulley locking elements.
3.Shaft :The shaft is designed to accommodate all the applied forces from the belt and / or the drive unit, with minimum deflection. The shaft is located and locked to the hubs of the end discs by means of a locking elements. The shaft and hence pulley shafts are often stepped.
4.Locking Elements:These are high-precision manufactured items which are fitted over the shaft and into the pulley hubs. The locking elements attach the pulley firmly to the shaft via the end plates.
5.Hubs:The hubs are fabricated and machined housings which are welded into the end plates.
6.LaggingIt is sometimes necessary or desirable to improve the friction between the conveyor belt and the pulley in order to improve the torque that can be transmitted through a drive pulley. Improved traction over a pulley also assists with the training of the belt. In such cases pulley drum surfaces are `lagged` or covered in a rubberized material.
7.Bearing: Bearings used for conveyor pulleys are generally spherical roller bearings, chosen for their radial and axial load supporting characteristics. The bearings are self-aligning relative to their raceways, which means that the bearings can be ‘misaligned’ relative to the shaft and plummer blocks, to a certain degree. In practical terms this implies that the bending of the shaft under loaded conditions as well as minor misalignment of the pulley support structure, can be accommodated by the bearing.

The Production Process of Pulley:

Our Products:

1.Different types of Laggings can meet all kinds of complex engineering requirements.
2.Advanced welding technology ensures the connection strength between Shell and End-Disk.
3.High-strength Locking Elements can satisfy torque and bending requirements.
4.T-shape End-Discs provide highest performance and reliability.
5.The standardized Bearing Assembly makes it more convenient for the end user to replace it.
6.Excellent raw material and advanced processing technology enable the shaft can withstand enough torque.
7.Low maintenance for continued operation and low total cost of ownership.
8.Scientific design process incorporating Finite Element Analysis.

Our Workshop:

 

 

Material: Carbon Steel
Surface Treatment: Baking Paint
Motor Type: Frequency Control Motor
Samples:
US$ 40/Piece
1 Piece(Min.Order)

|

Order Sample

Free sample
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

drive pulley

Are there different types of drive pulleys, and how do they differ in their applications?

Yes, there are different types of drive pulleys available, each designed for specific applications based on factors such as power requirements, belt type, speed, and environmental conditions. These different types of drive pulleys offer variations in design, construction, and features to suit various industrial applications. Here’s an overview of some common types of drive pulleys and how they differ in their applications:

1. Flat Belt Pulleys:

Flat belt pulleys have a flat cylindrical surface and are typically used with flat belts. They are commonly found in applications where moderate power transmission is required, such as in light-duty machinery, conveyor systems, and agricultural equipment. Flat belt pulleys are known for their simplicity, cost-effectiveness, and ease of installation. They are available in various sizes and materials, including cast iron, steel, and aluminum.

2. V-Belt Pulleys:

V-belt pulleys have a V-shaped groove on their cylindrical surface and are designed to work with V-belts. The V-groove helps improve belt grip and prevents slippage, making them suitable for high-power transmission applications. V-belt pulleys are commonly used in automotive engines, industrial machinery, HVAC systems, and heavy-duty equipment. They are available in different configurations, including single-groove, multi-groove, and variable speed pulleys.

3. Timing Belt Pulleys:

Timing belt pulleys are designed to work with timing belts, also known as synchronous belts. These pulleys have teeth or grooves on their surface that mesh with corresponding teeth on the timing belt, providing precise and synchronous power transmission. Timing belt pulleys are commonly used in applications that require accurate positioning and synchronization of components, such as CNC machines, robotics, printing presses, and automotive engine systems.

4. Chain Drive Sprockets:

Chain drive sprockets are used in systems that utilize roller chains for power transmission. These pulleys have teeth or cogs that mesh with the links of the roller chain, enabling efficient power transfer. Chain drive sprockets are commonly used in heavy-duty applications, such as industrial machinery, conveyors, motorcycles, bicycles, and agricultural equipment. They are available in various configurations, including single-strand, double-strand, and multi-strand sprockets.

5. Cone Pulleys:

Cone pulleys have a tapered or conical shape and are used in applications that require variable speed drives. By adjusting the position of the belt on the conical surface, the effective pulley diameter changes, resulting in different speeds. Cone pulleys are commonly found in machine tools, drill presses, lathes, and other equipment where variable speed control is necessary.

6. Magnetic Pulleys:

Magnetic pulleys are designed with a magnetic surface to attract and hold ferrous materials. They are used in applications such as magnetic separators, material handling systems, recycling, and mining industries. Magnetic pulleys are effective in removing tramp iron or unwanted metal contaminants from conveyed materials.

These are just a few examples of the different types of drive pulleys available. Each type has its own specific design and features that make it suitable for particular applications based on factors like power transmission requirements, belt compatibility, speed control, and environmental conditions. It’s important to select the appropriate type of drive pulley based on the specific needs and operating conditions of the application to ensure optimal performance and longevity.

drive pulley

What maintenance procedures are necessary to ensure the reliability of drive pulleys?

Proper maintenance procedures are essential to ensure the reliability and longevity of drive pulleys. Regular maintenance helps identify and address potential issues before they escalate, minimizing downtime and preventing costly breakdowns. Here are some important maintenance procedures for drive pulleys:

1. Visual Inspection:

Perform regular visual inspections of the drive pulleys to check for any signs of wear, damage, or misalignment. Look for cracks, chips, or excessive wear on the pulley surface. Inspect the pulley hub and keyway for any signs of damage or corrosion. Ensure that the pulley is properly aligned with the drive shaft and other components. If any abnormalities are detected, further investigation or corrective action may be necessary.

2. Lubrication:

Follow the manufacturer’s guidelines for lubrication to ensure smooth operation of the drive pulley. Lubrication reduces friction and heat, preventing premature wear and extending the pulley’s lifespan. Apply the recommended lubricant to the pulley bearings or bushings as per the specified intervals. Ensure that the lubricant used is compatible with the pulley material and operating conditions.

3. Tension and Belt/Chain Alignment:

Check the tension of the belts or chains connected to the drive pulley regularly. Incorrect belt or chain tension can lead to slippage, reduced power transmission efficiency, and accelerated wear on the pulley and associated components. Follow the manufacturer’s guidelines or consult the equipment manual for the appropriate tensioning procedures. Additionally, ensure proper alignment between the pulley and the driven components to prevent excessive side loading or belt/chain misalignment.

4. Cleaning:

Keep the drive pulleys clean and free from debris, dust, or contaminants. Regularly remove any accumulated dirt, debris, or residue from the pulley surfaces and grooves. Use appropriate cleaning methods and tools, such as brushes or compressed air, to ensure thorough cleaning without causing damage to the pulley or its components. Clean pulleys help maintain proper belt traction and reduce the risk of slippage.

5. Belt/Chain Maintenance:

In addition to maintaining the drive pulleys, proper maintenance of the belts or chains connected to the pulleys is crucial. Inspect the belts or chains for signs of wear, damage, or stretching. Replace worn-out or damaged belts or chains promptly to prevent adverse effects on the drive pulley’s performance. Follow the manufacturer’s guidelines for belt or chain tensioning, alignment, and replacement intervals.

6. Balancing:

Imbalance in the drive pulley can result in vibration, increased stress on the pulley and associated components, and reduced overall system performance. Periodically check the balance of the drive pulley and take corrective measures if necessary. Balancing may involve the use of specialized equipment or consulting a professional service provider to ensure proper balancing and smooth operation.

7. Record-Keeping:

Maintain accurate records of maintenance activities performed on the drive pulleys. This includes recording inspection dates, lubrication schedules, belt or chain replacements, and any corrective actions taken. Proper record-keeping helps track maintenance history, identify recurring issues, and ensure compliance with maintenance schedules and recommendations.

8. Professional Inspection:

Consider engaging a qualified professional or a service provider for periodic inspections and maintenance of drive pulleys, especially in complex or critical applications. Professionals can perform more detailed assessments, identify potential issues, and provide expert recommendations to ensure the reliability and optimal performance of the drive pulleys.

In conclusion, regular maintenance procedures are necessary to ensure the reliability of drive pulleys. Visual inspections, proper lubrication, tension and alignment checks, cleaning, belt/chain maintenance, balancing, record-keeping, and professional inspections all contribute to the longevity and optimal operation of drive pulleys, reducing the risk of failures and improving overall system reliability.

drive pulley

What types of belts or cables are typically employed with drive pulleys?

Drive pulleys are commonly used in conjunction with various types of belts or cables to facilitate power transmission and motion control in mechanical systems. The choice of belt or cable depends on the specific application, load requirements, environmental conditions, and desired performance characteristics. Here are some of the typical types of belts or cables employed with drive pulleys:

1. V-Belts:

V-belts are a common type of belt used with drive pulleys. They have a trapezoidal cross-section that fits into the V-shaped groove of the pulley. V-belts are made of rubber or synthetic materials and are reinforced with cords or fibers to provide strength and flexibility. They are known for their high friction grip and are suitable for moderate power transmission applications. V-belts are widely used in industrial machinery, automotive engines, and other systems that require reliable power transmission.

2. Timing Belts:

Timing belts, also known as synchronous belts, are toothed belts that work in conjunction with toothed pulleys or sprockets. The teeth on the belt mesh with the grooves on the pulley, allowing for precise and synchronous power transmission. Timing belts are commonly made of rubber or polyurethane, reinforced with cords or fibers for strength. They are used in applications that require accurate positioning, such as in engines, robotics, and precision machinery.

3. Flat Belts:

Flat belts are simple, flat strips of material that are used with flat pulleys. They are usually made of rubber, leather, or fabric-reinforced materials. Flat belts offer flexibility and are suitable for applications that require high-speed power transmission. They are commonly used in light-duty machinery, such as printers, textile machines, and some conveyor systems.

4. Serpentine Belts:

Serpentine belts, also known as multi-vee belts or ribbed belts, feature multiple longitudinal ribs on the inner side of the belt. They are used with pulleys that have matching grooves to provide increased surface contact and improved power transmission efficiency. Serpentine belts are commonly used in automotive engines to drive multiple accessories such as the alternator, power steering pump, and air conditioning compressor.

5. Cable and Wire Rope:

In certain applications, drive pulleys are used in conjunction with cables or wire ropes for power transmission, lifting, or pulling operations. Cables and wire ropes are made of multiple strands of metal wires twisted or braided together to provide strength and flexibility. They are commonly used in cranes, winches, elevators, and other heavy-duty lifting or pulling equipment.

6. Chain Drives:

While not technically belts, chain drives are another type of power transmission system commonly used with drive pulleys. Chains consist of interlocking metal links that engage with sprockets on the pulleys. Chain drives are durable, capable of handling high loads, and suitable for applications that require high torque transmission. They are commonly used in motorcycles, bicycles, industrial machinery, and conveyors.

7. Conveyor Belts:

Conveyor belts are specialized belts designed for material handling and bulk transportation applications. They are used with drive pulleys in conveyor systems to transport goods, packages, or materials. Conveyor belts are typically made of rubber or fabric-reinforced materials and can be customized with various surface patterns or cleats to suit specific applications, such as inclines, declines, or sorting operations.

These are some of the typical types of belts or cables employed with drive pulleys. The selection of the appropriate belt or cable depends on factors such as the power requirements, speed, accuracy, environmental conditions, and load capacity of the system.

China Good quality OEM Belt Conveyor Pulley High Wear Resistance Head Ceramic Drive Tail Snub Bend Take up CZPT Grooved Rubber Lagging Drum Pulley   pulley attachments	China Good quality OEM Belt Conveyor Pulley High Wear Resistance Head Ceramic Drive Tail Snub Bend Take up CZPT Grooved Rubber Lagging Drum Pulley   pulley attachments
editor by CX