China high quality OEM Belt Conveyor Pulley High Wear Resistance Head Ceramic Drive Tail Snub Bend Take up CZPT Grooved Rubber Lagging Drum Pulley double pulley

Product Description


Conveyor Pulley is
manufactured as per customer requirement,with main design under national standard,quality inspection focusing on shaft core,welded joint,rubber material and hardness,dynamic balance and so on for longer product life time.

Drive/Head Pulley – A conveyor pulley used for the purpose of driving a conveyor belt. Typically mounted in external bearings and driven by an external drive source.
Return/Tail Pulley – A conveyor pulley used for the purpose of redirecting a conveyor belt back to the drive pulley. Tail pulleys can utilize internal bearings or can be mounted in external bearings and are typically located at the end of the conveyor bed. Tail pulleys commonly serve the purpose of a Take-Up pulley on conveyors of shorter lengths.
Snub Pulley – A conveyor pulley used to increase belt wrap around a drive pulley, typically for the purpose of improving traction.
Take-Up Pulley – A conveyor pulley used to remove slack and provide tension to a conveyor belt. Take-Up pulleys are more common to conveyors of longer lengths.
Bend Pulley – A conveyor pulley used to redirect the belt and provide belt tension where bends occur in the conveyor system.

The specification of pulley:
Drive Drum: is the main component of power transmission. The drum can be divided into single drum (the angle of the belt to the drum is 210 ° ~ 230 °) , Double Drum (the angle of the belt to the drum is up to 350 °) and
multi-drum (used for high power) . 
Bend Drum: is used for changing the running direction of the conveyor belt or increasing the surrounding angle of the conveyor belt on the driving roller, and the roller adopts a smooth rubber surface . The drum shaft shall be forgings and shall be nondestructive tested and the inspection report shall be provided. 
The Various Surface of Pulley:
Conveyor pulley lagging is essential to improve conveyor belt performance, the combination of our pulley lagging can reduces belt slippage, improve tracking and extends life of belt, bearing & other components.

PLAIN LAGGING:This style of finish is suitable for any pulley in the conveyor system where watershed is not necessary. It provides additional protection against belt wear, therefore, increasing the life of the pulley.
DIAMOND GROOVE LAGGING:This is the standard pattern on all Specdrum lagged conveyor pulleys. It is primarily used for reversing conveyor drive pulleys. It is also often used to allow bi-directional pulley rotation, and the pattern allows water to be dispersed away from the belt.
HERRINGBONE LAGGING:The herringbone pattern’s grooves are in the direction of rotation, and offers superior tractive properties. Each groove allows water and other liquids to escape between the face of the drum pulley and the belt. Herringbone grooved pulleys are directional and should be applied to the conveyor in a manner in which the grooves point toward the direction of the belt travel.
CHEVRON LAGGING:Some customers specify that the points of the groove should meet – as done in Chevron styled lagging. As before with the herringbone style, this would be used on drive drum pulleys and should be fitted in the correct manner, so as to allow proper use of the pattern and water dispersion also.
CERAMIC LAGGING:The Ceramic tiles are moulded into the lagging which is then cold bonded to the drum pulley. This style of finish allows excellent traction and reduces slippage, meaning that the belt tension is lower and, therefore as a result, increases the life of the pulley.
WELD-ON STRIP LAGGING: Weld-On Strip Lagging can be applied to bi-directional pulleys, and also has a finish to allow the easy dispersion of water or any fluids between the drum pulley and the belt.

The Components of Pulley:
 

1. Drum or Shell:The drum is the portion of the pulley in direct contact with the belt. The shell is fabricated from either a rolled sheet of steel or from hollow steel tubing.
2.Diaphragm Plates: The diaphragm or end plates of a pulley are circular discs which are fabricated from thick steel plate and which are welded into the shell at each end, to strengthen the drum.The end plates are bored in their centre to accommodate the pulley Shaft and the hubs for the pulley locking elements.
3.Shaft :The shaft is designed to accommodate all the applied forces from the belt and / or the drive unit, with minimum deflection. The shaft is located and locked to the hubs of the end discs by means of a locking elements. The shaft and hence pulley shafts are often stepped.
4.Locking Elements:These are high-precision manufactured items which are fitted over the shaft and into the pulley hubs. The locking elements attach the pulley firmly to the shaft via the end plates.
5.Hubs:The hubs are fabricated and machined housings which are welded into the end plates.
6.LaggingIt is sometimes necessary or desirable to improve the friction between the conveyor belt and the pulley in order to improve the torque that can be transmitted through a drive pulley. Improved traction over a pulley also assists with the training of the belt. In such cases pulley drum surfaces are `lagged` or covered in a rubberized material.
7.Bearing: Bearings used for conveyor pulleys are generally spherical roller bearings, chosen for their radial and axial load supporting characteristics. The bearings are self-aligning relative to their raceways, which means that the bearings can be ‘misaligned’ relative to the shaft and plummer blocks, to a certain degree. In practical terms this implies that the bending of the shaft under loaded conditions as well as minor misalignment of the pulley support structure, can be accommodated by the bearing.

The Production Process of Pulley:

Our Products:

1.Different types of Laggings can meet all kinds of complex engineering requirements.
2.Advanced welding technology ensures the connection strength between Shell and End-Disk.
3.High-strength Locking Elements can satisfy torque and bending requirements.
4.T-shape End-Discs provide highest performance and reliability.
5.The standardized Bearing Assembly makes it more convenient for the end user to replace it.
6.Excellent raw material and advanced processing technology enable the shaft can withstand enough torque.
7.Low maintenance for continued operation and low total cost of ownership.
8.Scientific design process incorporating Finite Element Analysis.

Our Workshop:

 

 

Material: Carbon Steel
Surface Treatment: Baking Paint
Motor Type: Frequency Control Motor
Samples:
US$ 40/Piece
1 Piece(Min.Order)

|

Order Sample

Free sample
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

drive belt pulley

Can drive belt pulleys be part of DIY automotive maintenance and repairs?

Yes, drive belt pulleys can be part of DIY automotive maintenance and repairs, depending on the specific task and the individual’s skill level. Here’s a detailed explanation:

1. Inspecting and Replacing Drive Belts:

One common DIY maintenance task involving drive belt pulleys is inspecting and replacing the drive belts. Over time, drive belts can wear out, fray, or develop cracks, affecting their performance and reliability. By following proper safety precautions and consulting the vehicle’s manual, DIY enthusiasts can visually inspect the drive belts and identify signs of wear or damage. If necessary, they can remove the old belt and install a new one, which may involve loosening or removing the drive belt pulley to facilitate the belt replacement.

2. Adjusting Belt Tension:

Another DIY task related to drive belt pulleys is adjusting the belt tension. Drive belts need to be properly tensioned for optimal performance and longevity. Some vehicles have adjustable pulleys or tensioners that allow for belt tension adjustment. DIY enthusiasts can learn how to use the appropriate tools to adjust the tension by following the vehicle’s manual or online tutorials. This task may involve loosening or tightening the drive belt pulley to achieve the desired tension.

3. Replacing Drive Belt Pulleys:

In certain cases, drive belt pulleys may become worn, damaged, or develop faults that affect their functionality. DIY enthusiasts with intermediate to advanced mechanical skills can learn to replace drive belt pulleys themselves. This task typically involves removing the drive belt, unbolting the old pulley, and installing a new one. It’s important to ensure the correct pulley size, type, and specifications are selected to maintain proper power transmission and alignment.

4. Upgrading Drive Belt Pulleys:

Some DIY enthusiasts may choose to upgrade their drive belt pulleys to improve performance or accommodate specific modifications. For example, performance-oriented enthusiasts may opt for lightweight pulleys made from materials like aluminum, which can reduce rotational mass and improve engine response. However, it’s crucial to research and select pulleys that are compatible with the vehicle’s engine and accessories, as improper pulley modifications can negatively impact performance and reliability.

5. Seeking Professional Assistance:

It’s important to note that working with drive belt pulleys and power transmission systems requires mechanical knowledge and skills. If DIY enthusiasts are unsure about their abilities or encounter complex issues, it’s recommended to seek professional assistance from qualified mechanics or automotive technicians. They have the expertise and specialized tools to handle more intricate repairs and ensure proper installation and alignment of drive belt pulleys.

By considering their skill level, following safety precautions, and consulting reliable resources, DIY enthusiasts can incorporate drive belt pulleys into their automotive maintenance and repairs. However, it’s essential to recognize personal limitations and seek professional help when needed to avoid potential risks or further damage to the vehicle.

drive belt pulley

How do drive belt pulleys impact the performance of industrial machinery?

Drive belt pulleys play a significant role in the performance of industrial machinery. Here’s a detailed explanation of how drive belt pulleys impact the performance of industrial machinery:

1. Power Transmission:

Drive belt pulleys are responsible for transmitting power from the motor or engine to various components of industrial machinery. They provide the mechanical linkage between the power source and driven equipment, such as pumps, compressors, conveyors, and machines. The design and quality of the pulleys directly affect the efficiency and reliability of power transmission, impacting the overall performance of the machinery.

2. Speed Control:

Drive belt pulleys are instrumental in controlling the rotational speed of driven equipment. By using pulleys of different sizes or employing pulley systems with multiple belts, the speed ratio can be adjusted to meet specific operational requirements. This allows for precise control of machinery speed, which is crucial in applications that require varying operating speeds or synchronization with other processes.

3. Torque Transfer:

Drive belt pulleys facilitate the transfer of torque from the motor or engine to the driven equipment. The pulley design, including its diameter, groove size, and belt type, determines the torque-carrying capacity. Properly sized and designed pulleys ensure that the required torque is effectively transferred to the driven components, enabling the machinery to perform the necessary tasks with adequate force.

4. Belt Tension and Stability:

Drive belt pulleys help maintain proper belt tension, which is crucial for the stability and performance of industrial machinery. Tensioned belts ensure reliable power transmission by preventing slippage and maintaining sufficient contact between the pulleys and belts. The pulley design may include features such as tensioning mechanisms or adjustable pulley positions to facilitate proper belt tensioning and stability.

5. Load Distribution:

Drive belt pulleys aid in distributing the load across the machinery’s components. By properly sizing and aligning the pulleys, the load can be evenly distributed among the belts, pulleys, and driven equipment. This helps prevent excessive wear and stress on individual components, prolonging their lifespan and ensuring the overall performance and durability of the machinery.

6. Noise and Vibration Reduction:

Well-designed drive belt pulleys contribute to reducing noise and vibration levels in industrial machinery. Proper alignment, balance, and surface quality of the pulleys minimize vibration and noise generation during operation. This enhances the working environment, reduces operator fatigue, and improves overall equipment performance.

7. Maintenance and Serviceability:

The design of drive belt pulleys can impact the ease of maintenance and serviceability of industrial machinery. Pulleys that are accessible, have removable covers or guards, and allow for straightforward belt replacement or tension adjustment simplify maintenance procedures. This reduces downtime and ensures that the machinery remains operational and productive.

8. System Flexibility and Adaptability:

Drive belt pulleys offer flexibility and adaptability in industrial machinery. They allow for the integration of different power sources and driven equipment, enabling customization and expansion of the machinery’s capabilities. By changing pulley sizes or configurations, the machinery can be adapted to different operating conditions, power requirements, or production demands.

Overall, drive belt pulleys have a crucial impact on the performance of industrial machinery. They facilitate power transmission, speed control, torque transfer, belt tension, load distribution, noise reduction, maintenance, and system flexibility. Proper selection, design, and maintenance of drive belt pulleys are essential to optimize the performance, efficiency, and reliability of industrial machinery.

drive belt pulley

What are the advantages of using drive belt pulleys in automotive engines?

Drive belt pulleys offer several advantages when used in automotive engines. Here’s a detailed explanation of the advantages of using drive belt pulleys in automotive engines:

1. Power Distribution:

Drive belt pulleys enable efficient power distribution within the automotive engine. They transfer power from the engine’s crankshaft to various components such as the alternator, water pump, power steering pump, air conditioning compressor, and supercharger. This ensures that these components receive the necessary power to operate effectively, contributing to the overall performance of the vehicle.

2. Versatility:

Drive belt pulleys are versatile components that can accommodate multiple belts and drive various accessories simultaneously. They can be designed to have multiple grooves, allowing them to drive different systems and components within the automotive engine. This versatility enables the integration of various systems and accessories, enhancing the functionality and convenience of the vehicle.

3. Easy Maintenance:

Drive belt pulleys are relatively easy to maintain and replace. If a belt becomes worn or damaged, it can be easily removed and replaced without the need for extensive disassembly of the engine. This simplifies maintenance tasks and reduces downtime during repairs or belt replacements, ensuring that the vehicle can be quickly back on the road.

4. Efficiency and Performance:

Drive belt pulleys contribute to the overall efficiency and performance of automotive engines. By properly transferring power to driven components, they ensure the optimal operation of systems such as the alternator for electrical generation, the water pump for engine cooling, and the power steering pump for smooth steering. This results in improved fuel efficiency, reliable performance, and enhanced driving experience.

5. Cost-Effectiveness:

Using drive belt pulleys in automotive engines can be cost-effective. Compared to alternative power transmission systems, such as gear-driven systems, drive belt pulleys are often more affordable to manufacture and maintain. They also provide flexibility in accommodating different belt sizes and types, allowing for cost-effective customization based on specific vehicle requirements.

6. Noise and Vibration Damping:

Drive belt pulleys help dampen noise and vibrations generated by the engine and other components. The flexibility and elasticity of the belt, along with the design of the pulley, act as a cushion, reducing the transmission of vibrations and providing smoother operation. This contributes to a quieter and more comfortable driving experience.

7. Compact Design:

Drive belt pulleys have a compact design, which is advantageous in automotive engines where space is often limited. They can be integrated into the engine layout without requiring significant additional space or complex modifications. This compact design allows for efficient packaging of the engine components and contributes to overall vehicle weight reduction.

8. Customization and Compatibility:

Drive belt pulleys can be customized and designed to be compatible with specific automotive engine configurations. This ensures proper fitment and alignment with the engine’s components, reducing the risk of misalignment, slippage, or premature wear. Customization also allows for the adaptation of drive belt pulleys to different vehicle models and engine variations.

Overall, the use of drive belt pulleys in automotive engines provides advantages such as efficient power distribution, versatility, easy maintenance, improved efficiency and performance, cost-effectiveness, noise and vibration damping, compact design, and customization options. These advantages contribute to the reliable operation, optimal performance, and enhanced driving experience of vehicles equipped with drive belt pulley systems.

China high quality OEM Belt Conveyor Pulley High Wear Resistance Head Ceramic Drive Tail Snub Bend Take up CZPT Grooved Rubber Lagging Drum Pulley   double pulley	China high quality OEM Belt Conveyor Pulley High Wear Resistance Head Ceramic Drive Tail Snub Bend Take up CZPT Grooved Rubber Lagging Drum Pulley   double pulley
editor by CX