China best The Belt Machine Drives The Roller to Pulleys crankshaft pulley

Product Description

 

Product Description

    Head Drive Pulley, Return Pulley,Bend Pulley, Snub Pulley,Tensioning Pulley, Take up Pulley can be provided. We are designing and manufacturing pulleys, using materials of the highest quality in a production process employing advanced technology. This together with the application of the Quality Assurance system certifi ed to ISO 9001:2015, contributes to the production of high quality products offering dependable, long life performance in the field and appreciably reducing maintenance cost. Each our conveyor pulley is individually computer designed to meet the client’s requirements.

 

 

Product Name

Belt Conveyor Pulley Drum

Type

Drive Pulley, Bend Pulley,Snub Pulley,Take Up Pulley

Length

200mm-2500mm

Materials

Carbon steel, Stainless steel, Rubber

Surface Treatment

Smooth, CHINAMFG grooved lagging, Herringbone lagging, Ceramic lagging

Welding

Submerged Arc Welding

Bearing

Famous brands

Structure

Tube,shaft,self-aligning bearing,bearing seat/house,hub, locking bushing,end disc

Drive Pulley Introduction:

1. Head/Drive Pulley is located at the discharge terminus of the conveyor. 
2. Drive pulley provides the driving force for the conveyor. In order to increase pulley life and traction, it often has a larger diameter than other pulleys.
3. We can supply pulleys with hot vulcanized rubber lagging, plain or grooved, as required by client. Different patterns of grooving such as herringbone or CHINAMFG can be provided to increase tractive friction under dirty or wet conditions. CHINAMFG grooves have the advantage of being installed in any orientation, regardless of belt direction.

Specification of Drive Head Pulley Drum

Belt Width 500-2800mm (19-110 inch)
Pulley Length 500-3500mm (19-138 inch)
Diameter 200-1800mm (8-70 inch)
Standard ISO9001:2008, CEMA, DIN, TUV, JIS, AS/NS, etc.
Working Life More than 30,000 hours.
Surface Flat Rubber Lagged, Ceramic Lagged, CHINAMFG Rubber Lagged, etc.
Main Material Carbon Steel
Length of conveyor drive pulley depends on the width of conveyor Belt. You can get drive pulleys with hot & cold vulcanized rubber lagging, plain or grooved, as required by client.

Bend Pulley Introduction:

1. The bend pulley  is used for changing the direction of the belt.
2. The bend pulley is usually installed at the tail part or the vertical take-up equipment part when the belt direction need to 180°bending. It will be installed above the take-up equipment part while 90°bending.
3. The pulley, which is used for extending the contact surface, is usually used for below or equal to 45 degree bending.
4. The surface treatment of the bend pulley can be smooth steel and flat rubber lagging. 

Specification of Bend Pulley:

Belt Width 500-2800mm(19-110 inch)
Pulley Length 500-3200mm(19-126 inch)
Diameter 200-1800mm(8-70 inch)
Standard ISO9001:2008, CEMA, DIN, TUV, etc.
Working Life More than 30,000 hours.
Surface Flat Rubber Lagged, Ceramic Lagged, CHINAMFG Rubber Lagged, etc.
Main Material Carbon Steel
Length of conveyor bend pulley depends on the width of conveyor Belt. You can get drive pulleys with hot vulcanized rubber lagging, plain or grooved, as required by client.

Snub Pulley
Snub pulley is used to achieve higher angle of wrap on the drive pulley thereby increasing the traction. It also reduces the belt tension maximizing the life of the conveyor component.It is mounted close to the drive pulley on the return side of the belt.

Specification of Snub Pulley:

Items Content
Belt Width 500-2800mm (19-110 inch)
Pulley Length 500-3200mm (19-126 inch)
Diameter 200-1800mm (8-70 inch)
Standard ISO9001:2008, CEMA, DIN, TUV, etc.
Working Life More than 30,000 hours.
Surface Flat Rubber Lagged, Ceramic Lagged, CHINAMFG Rubber Lagged, etc.
Main Material Carbon Steel
Length of conveyor Snubpulley depends on the width of conveyor Belt. You can get Snubpulleys with hot vulcanized rubber lagging, plain or grooved, as required by client.

Take Up Pulley 
The take up pulley will ensure adequate tension of the belt leaving the drive pulley so as to avoid any slippage of the belt, ensure proper belt tension at the loading and other points along the conveyor, compensate for changes in belt length due to elongation, and provide extra length of belt when necessary for splicing purpose.

Specification of take up pulley drum:

Belt Width 500-2800mm(19-110 inch)
Pulley Length 500-3200mm(19-126 inch)
Diameter 200-1800mm(8-70 inch)
Standard ISO9001:2008, CEMA, DIN, TUV, etc.
Working Life More than 30,000 hours.
Surface Flat Rubber Lagged, Ceramic Lagged, CHINAMFG Rubber Lagged, etc.
Main Material Carbon Steel

The components of a pulley drum include the following:

Drum or Shell The drum is the portion of the pulley in direct contact with the belt. The shell is fabricated from either a rolled sheet of steel or from hollow steel tubing.The shell has a specific ‘face’ width and diameter which is determined by the width of the belting and the type and rating of the belt to be used on the conveyor.
Diaphragm Plates The diaphragm or end plates of a pulley are circular discs which are fabricated from thick steel plate and which are welded into the shell at each end, to strengthen the drum.The end plates are bored in their centre to accommodate the pulley shaft and the hubs for the pulley locking elements.
Shaft The shaft is designed to accommodate all the applied forces from the belt and / or the drive unit, with minimum deflection.The shaft is located and locked to the hubs of the end discs by means of a locking elements.
The shaft is supported on both ends by bearings which are housed in plummer blocks, to support the shaft and pulley assembly on the conveyor structure.
Shafts often comprise different diameters along their length due to the bending moments and resultant deflection limitations. The diameter of the shaft at the landings for the bearings may be smaller to satisfy the necessary bearing diameter which is more cost-effective (smaller).
Similarly in the case of a drive shaft, the drive attachment, may be different to the other diameters along the shaft and hence pulley shafts are often stepped.
Locking Elements These are high-precision manufactured items which are fitted over the shaft and into the pulley hubs. The locking elements attach the pulley firmly to the shaft via the end plates.Locking elements work on the friction-grip principle whereby the element is able to be fastened to the shaft and hub simultaneously and concentrically, by tightening a series of screws around the locking element.
Hubs The hubs are fabricated and machined housings which are welded into the end plates. The hubs are sized according to the size of the pulley, the diameter of the shaft and the size of the locking element which is required for the specific duty.
Lagging It is sometimes necessary or desirable to improve the friction between the conveyor belt and the pulley in order to improve the torque that can be transmitted through a drive pulley.Improved traction over a pulley also assists with the training of the belt.
In such cases pulley drum surfaces are ‘lagged’ or covered in a rubberized material. This cover is usually 8 mm to 12 mm thick and can be plain or have a grooved pattern. The rubber lagging is vulcanized to the pulley shell to ensure that it remains attached under adverse operating conditions.
Bearing Assemblies Bearings support the rotating shaft and hence the pulley. The bearings are housed in ‘plummer blocks’ which enable the mass of the pulley assembly plus the belt tension forces to be transmitted to the pulley supporting structure.Plummer blocks are often bolted to ‘sole plates’ which are welded to the structure.
The sole plates incorporate jacking screws to enable the pulley to be correctly and relatively easily aligned.

Several types of bearing housing, seals and end disc:

Pulley Drum Warehouse and package:

Pulley Drums:

Company profile:

        HangZhou CHINAMFG Intelligent Conveying System Co.,Ltd (abbreviated as CHINAMFG Intelligent) is the High-end Conveying Equipment brand , with excellent technical team and in house intellectual property & national patents,developing intelligent conveying machinery. Focusing on transforming itself into international competitive one-station solution provider of intelligent conveying system, providing not only intelligent products but also whole cycle management from construction to operation & service for our customers.Our company located in HangZhou city in North China Plain, it’s the cross road of ZheJiang ,ZheJiang and ZheJiang . We have more than 800 units advanced manufacturing equipments, including 20 large and main units and 3 automatic production lines. The factory covers 253,000 square meters. It’s registered capital is 71,550,00 USD, There are more than 300 employees which contains 30 with middle-level titles and 125 technical workers with high technical skills. Xinriseng is mainly engaged in the manufacture, sales and technical services of belt conveyors, large angle belt conveyors, horizontal curved belt conveyors and long distance crossing conveyors. Our products can be used in metallurgy, building materials, electric power, coal, port and other industries, products have been covered the whole domestic market, and exported to the United States, Germany, France and other EU countries, Australia, Brazil, along the Belt and Road countries, Southeast Asian countries and African emerging markets, totally more than 50 countries, gained the customers’ praise.Our company has a number of provincial innovative platforms, relying on the technological radiation, constantly strengthens exchanges and cooperation with scientific research institutes. We have successively formed school-enterprise partnerships with China University of Mining, ZheJiang University, ZheJiang Materials Handling Research Institute, HangZhou University of Architecture and Technology, keeping the conveyor design at the leading level in China. At the same time, our technical team regularly carries out technical exchanges and discussions with foreign companies, learning international leading design concepts and process methods, and keeps pace with international new technologies.With the innovative technology, good quality, CHINAMFG has established a one-stop service system. We will continue adhering to “servingthe users, making contributions to society”, make our company a flagship of conveying industry with international competitiveness. All in all, our company will provide the best products with high quality and competitive price for our customers and share success with you together.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO
Pulley Sizes: Type F
Manufacturing Process: Casting
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

drive pulley

Are there different types of drive pulleys, and how do they differ in their applications?

Yes, there are different types of drive pulleys available, each designed for specific applications based on factors such as power requirements, belt type, speed, and environmental conditions. These different types of drive pulleys offer variations in design, construction, and features to suit various industrial applications. Here’s an overview of some common types of drive pulleys and how they differ in their applications:

1. Flat Belt Pulleys:

Flat belt pulleys have a flat cylindrical surface and are typically used with flat belts. They are commonly found in applications where moderate power transmission is required, such as in light-duty machinery, conveyor systems, and agricultural equipment. Flat belt pulleys are known for their simplicity, cost-effectiveness, and ease of installation. They are available in various sizes and materials, including cast iron, steel, and aluminum.

2. V-Belt Pulleys:

V-belt pulleys have a V-shaped groove on their cylindrical surface and are designed to work with V-belts. The V-groove helps improve belt grip and prevents slippage, making them suitable for high-power transmission applications. V-belt pulleys are commonly used in automotive engines, industrial machinery, HVAC systems, and heavy-duty equipment. They are available in different configurations, including single-groove, multi-groove, and variable speed pulleys.

3. Timing Belt Pulleys:

Timing belt pulleys are designed to work with timing belts, also known as synchronous belts. These pulleys have teeth or grooves on their surface that mesh with corresponding teeth on the timing belt, providing precise and synchronous power transmission. Timing belt pulleys are commonly used in applications that require accurate positioning and synchronization of components, such as CNC machines, robotics, printing presses, and automotive engine systems.

4. Chain Drive Sprockets:

Chain drive sprockets are used in systems that utilize roller chains for power transmission. These pulleys have teeth or cogs that mesh with the links of the roller chain, enabling efficient power transfer. Chain drive sprockets are commonly used in heavy-duty applications, such as industrial machinery, conveyors, motorcycles, bicycles, and agricultural equipment. They are available in various configurations, including single-strand, double-strand, and multi-strand sprockets.

5. Cone Pulleys:

Cone pulleys have a tapered or conical shape and are used in applications that require variable speed drives. By adjusting the position of the belt on the conical surface, the effective pulley diameter changes, resulting in different speeds. Cone pulleys are commonly found in machine tools, drill presses, lathes, and other equipment where variable speed control is necessary.

6. Magnetic Pulleys:

Magnetic pulleys are designed with a magnetic surface to attract and hold ferrous materials. They are used in applications such as magnetic separators, material handling systems, recycling, and mining industries. Magnetic pulleys are effective in removing tramp iron or unwanted metal contaminants from conveyed materials.

These are just a few examples of the different types of drive pulleys available. Each type has its own specific design and features that make it suitable for particular applications based on factors like power transmission requirements, belt compatibility, speed control, and environmental conditions. It’s important to select the appropriate type of drive pulley based on the specific needs and operating conditions of the application to ensure optimal performance and longevity.

drive pulley

How are drive pulleys utilized in agricultural machinery and equipment?

Drive pulleys play a crucial role in various agricultural machinery and equipment, enabling the transfer of power and motion between different components. Here are some common applications of drive pulleys in agriculture:

1. Belt-driven Systems:

Many agricultural machines use belt-driven systems, where drive pulleys are utilized to transmit power from the engine to different components. For example, in combines and harvesters, drive pulleys connect the engine to the threshing mechanism, cleaning system, and grain handling equipment. These pulleys help drive the belts that transfer power and enable the operation of different functions within the machine.

2. Conveyor Systems:

In agricultural operations such as grain handling facilities, drive pulleys are used in conveyor systems. These pulleys provide the driving force to move materials such as grains, seeds, or feed along the conveyor belts. The drive pulley’s rotation creates the necessary tension and friction to propel the belt, allowing for efficient and controlled material handling and transportation.

3. Augers and Grain Handling Equipment:

Drive pulleys are integral components of augers and other grain handling equipment. Augers are commonly used in agriculture for tasks like loading and unloading grain, transferring feed, or moving bulk materials. Drive pulleys are used to power the rotational motion of the auger, enabling efficient and precise material handling. The pulley’s size and speed determine the auger’s capacity and performance.

4. Irrigation Systems:

Irrigation systems in agriculture often utilize drive pulleys to transmit power from a motor or engine to pumps or water distribution mechanisms. The pulleys drive belts that connect the power source to the irrigation pump, allowing for the pressurized delivery of water to crops. Drive pulleys help regulate the speed and torque required for efficient irrigation operations.

5. Mowers and Hay Balers:

Drive pulleys are employed in mowers and hay balers used for cutting and baling crops such as grass, hay, or straw. These pulleys transfer power from the tractor’s engine to the cutting blades or baling mechanisms, enabling the efficient operation of these machines. The pulleys ensure that the rotational energy from the engine is effectively converted into the desired cutting or baling action.

6. Seeders and Planters:

Seeders and planters in agriculture often rely on drive pulleys to power the distribution mechanisms that sow seeds or plant seedlings. The pulleys drive belts or chains that rotate the seed metering units or planting mechanisms, ensuring precise seed or plant placement in the field. This allows for accurate spacing and depth control during the planting process.

7. Sprayers and Fertilizer Spreaders:

Drive pulleys are utilized in sprayers and fertilizer spreaders to power the spraying or spreading mechanisms. These pulleys transfer power from the engine to the spraying pump or spreader discs, enabling the even distribution of liquid fertilizers, pesticides, or granular materials. The pulleys help maintain the desired rotation speed and torque for effective application.

In summary, drive pulleys are extensively used in various agricultural machinery and equipment for power transmission and motion control. They are employed in belt-driven systems, conveyor systems, augers, irrigation systems, mowers, balers, seeders, planters, sprayers, and fertilizer spreaders. By facilitating the transfer of power, drive pulleys contribute to the efficient operation of agricultural processes, enhancing productivity and performance.

drive pulley

How do drive pulleys contribute to the efficient transmission of power?

Drive pulleys play a crucial role in ensuring the efficient transmission of power in various mechanical systems. Their design and function enable the transfer of rotational motion and torque from a driving source, such as an engine or motor, to driven components, such as belts, chains, or shafts. Here’s how drive pulleys contribute to the efficient transmission of power:

1. Power Transfer:

Drive pulleys provide a mechanical interface between the driving source and the driven components. They transmit power from the driving source to the driven components, allowing them to perform their intended functions. By maintaining a solid connection and effective power transfer, drive pulleys minimize energy losses and maximize the efficiency of the system.

2. Speed and Torque Conversion:

Drive pulleys are often used in conjunction with belts or chains to convert speed and torque between the driving source and the driven components. By varying the size ratio between the driving and driven pulleys, different speed and torque relationships can be achieved. This allows for the adaptation of power output to meet the specific requirements of the driven components, optimizing efficiency and performance.

3. Mechanical Advantage:

Drive pulleys can provide mechanical advantage in power transmission systems. By utilizing different-sized pulleys or multiple pulley arrangements, such as pulley systems with multiple belts or chains, the mechanical advantage can be increased. This enables the driving source to exert a greater force or torque on the driven components, enhancing efficiency and enabling the handling of higher loads or resistance.

4. Belt Tension and Grip:

In belt-driven systems, drive pulleys contribute to efficient power transmission by maintaining proper belt tension and grip. The design of the pulley rim, such as V-grooves or toothed profiles, ensures optimal engagement with the belt, preventing slippage and ensuring efficient power transfer. By effectively gripping the belt, drive pulleys minimize energy losses due to slipping or excessive friction, thereby improving overall efficiency.

5. Alignment and Stability:

Drive pulleys help maintain proper alignment and stability in power transmission systems. They guide the movement of belts, chains, or shafts, ensuring that they remain in the desired position and track correctly. Proper alignment reduces friction and wear, minimizing energy losses and improving the overall efficiency of the system. Additionally, stable and well-supported drive pulleys prevent vibrations and misalignment, which can lead to decreased efficiency and increased wear.

6. Load Distribution:

Drive pulleys distribute the transmitted power evenly across the system. They help distribute the load or force exerted by the driving source to the driven components, ensuring balanced power transmission. This balanced load distribution minimizes stress concentrations and prevents premature wear or failure of system components, contributing to overall efficiency and longevity.

7. Maintenance and Serviceability:

Efficient power transmission is also facilitated by the maintenance and serviceability features of drive pulleys. Properly designed pulleys allow for easy installation, adjustment, and replacement of belts, chains, or other driven components. This simplifies maintenance tasks, reduces downtime, and ensures that the system operates at its optimal efficiency over its lifespan.

In summary, drive pulleys contribute to the efficient transmission of power by providing a reliable mechanical interface, enabling speed and torque conversion, offering mechanical advantage, maintaining belt tension and grip, ensuring alignment and stability, distributing loads evenly, and facilitating maintenance and serviceability. By optimizing power transfer and minimizing energy losses, drive pulleys enhance the overall efficiency and performance of mechanical systems.

China best The Belt Machine Drives The Roller to Pulleys   crankshaft pulley	China best The Belt Machine Drives The Roller to Pulleys   crankshaft pulley
editor by CX