China OEM Belt Conveyor Drive Head Bend Take up Snub CZPT Tail Ceramic Rubber Coated CZPT Herringbone Chevron Grooved Lagging Crowned Motorized Drum Pulley for Mining pulley drive

Product Description

Product Description

 

A conveyor will always consist of at least 2 pulleys, head pulley and tail pulley, with additional pulleys used depending on the configuration. Standard-duty pulleys are usually adequate for simple applications, but mine-duty and engineered pulleys are also available where heavy-duty pulleys are required.

Different kinds of conveyor pulleys
KONWEYOUR sells conveyor pulleys in all the following sub-categories: 

Head pulleys

The head pulley is located at the discharge point of the conveyor. It usually drives the conveyor and often has a larger diameter than other pulleys. For better traction, the head pulley is usually lagged (with either rubber or ceramic lagging material).

Tail and CHINAMFG pulleys

The tail pulley is located at the loading end of the belt. It comes with either a flat face or a slatted profile (wing pulley), which cleans the belt by allowing material to fall between the support members.

Snub pulleys

A snub pulley improves the traction of the drive pulley, by increasing its belt wrap angle.

Drive pulleys

Drive pulleys, which can also be the head pulley, are driven by a motor and power transmission unit to propel the belt and material to the discharge.

Bend pulleys

A bend pulley is used for changing the direction of the belt.

Take-up pulley

A take-up pulley is used to provide the belt with the proper amount of tension. Its position is adjustable.
 

Product Parameters

 

Type Belt width(mm) Standard Diameter(mm) Length(mm)
Drive Pulley           500 500

Length of the pulley depends on the belt width of the conveyor 

650 500~630
800 630~1000
1000 800~1150
1200 800~1150
1400 1000~1350
1600 1150~1600
1800 1150~1800
2000 1350~2000
2200 1600~2200
2400 1800~2400
Bend Pully           500 250~500
650 250~630
800 250~1000
1000 250~1600
1200 250~1600
1400 315~1600
1600 400~1600
1800 400~1600
2000 500~1600
2200 630~1600
2400 800~1600

Packaging & Shipping

 

Detailed Photos

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Carbon Steel
Surface Treatment: Baking Paint
Motor Type: Frequency Control Motor
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

drive pulley

Can drive pulleys withstand extreme environmental conditions?

Drive pulleys are mechanical components used in various systems to transmit power and motion. They are commonly found in industries such as manufacturing, mining, and agriculture. The ability of drive pulleys to withstand extreme environmental conditions depends on several factors, including the materials used, the design and construction of the pulley, and the specific conditions it is exposed to.

In general, drive pulleys are designed to be durable and capable of operating under a wide range of environmental conditions. They are typically made from materials such as steel, cast iron, or aluminum, which offer good strength and resistance to wear and corrosion. These materials can withstand moderate to high temperatures, as well as exposure to moisture, dust, and other contaminants.

However, there are limits to the environmental conditions that drive pulleys can withstand. Extreme temperatures, such as those found in extremely hot or cold environments, can affect the performance and lifespan of the pulleys. High temperatures can cause thermal expansion, which may lead to misalignment or excessive wear. Cold temperatures can make materials more brittle and prone to cracking or breaking under stress.

In addition to temperature, other environmental factors such as humidity, corrosive substances, and abrasive particles can also impact the performance of drive pulleys. High humidity levels can promote corrosion, especially if the pulleys are not properly protected or coated with suitable protective finishes. Corrosion can weaken the pulley’s structural integrity and lead to premature failure.

Abrasive particles, such as dust or grit, can cause wear and tear on the pulley’s surface and the belt that runs on it. This can result in reduced traction and slipping, affecting the efficiency and reliability of the system. Proper maintenance and regular cleaning can help mitigate the effects of abrasive particles.

It’s worth noting that some applications may require special types of drive pulleys specifically designed to withstand extreme environmental conditions. For example, in industries where pulleys are exposed to chemicals or highly corrosive substances, pulleys made from stainless steel or other corrosion-resistant materials may be used.

In conclusion, while drive pulleys are designed to be robust and capable of withstanding a wide range of environmental conditions, there are limits to what they can endure. Extreme temperatures, humidity, corrosive substances, and abrasive particles can all impact the performance and lifespan of drive pulleys. It’s important to consider the specific environmental conditions and select pulleys that are suitable for the intended application.

drive pulley

Can drive pulleys be customized for specific machinery and equipment?

Yes, drive pulleys can be customized to meet the specific requirements of machinery and equipment. Customization allows for the design and manufacturing of drive pulleys that are tailored to suit the unique needs of a particular application. Here are the key aspects of customizing drive pulleys for specific machinery and equipment:

1. Size and Dimension:

Custom drive pulleys can be manufactured in different sizes and dimensions to match the space constraints and installation requirements of the machinery or equipment. The diameter, width, and overall dimensions of the pulley can be adjusted to ensure proper fit and compatibility with the system. Custom sizing ensures that the drive pulley integrates seamlessly into the equipment without any interference or clearance issues.

2. Groove Profile:

The groove profile of the drive pulley is crucial for proper engagement with the belt or chain. Custom drive pulleys can be designed with specific groove profiles to accommodate various belt or chain types, including V-belts, flat belts, round belts, or timing belts. The groove dimensions, angles, and shapes can be customized to ensure optimal belt or chain tracking, reducing the risk of slippage and enhancing power transmission efficiency.

3. Material Selection:

Drive pulleys can be customized with different materials based on the specific requirements of the machinery or equipment. The material selection depends on factors such as load capacity, environmental conditions, and system dynamics. Common materials used for drive pulleys include steel, aluminum, cast iron, or engineered plastics. Customization allows for choosing the most suitable material that offers the desired strength, durability, and corrosion resistance for the application.

4. Shaft Configuration:

Custom drive pulleys can be designed to accommodate specific shaft configurations of the machinery or equipment. The pulley can be manufactured with a keyed bore, tapered bore, or other customized shaft attachment mechanisms to ensure a secure and precise connection. The shaft configuration customization ensures proper alignment and eliminates any potential for slippage or misalignment during operation.

5. Special Features:

Custom drive pulleys can incorporate special features or modifications to meet specific functional requirements. These features can include additional mounting holes, keyways, set screws, or other provisions for auxiliary devices or sensors. Special features can also be added to enhance the performance or functionality of the pulley, such as dynamic balancing for high-speed applications or noise reduction measures.

6. Coatings or Surface Treatments:

Depending on the application and operating conditions, custom drive pulleys can be coated or treated with specialized surface treatments. Coatings such as zinc plating, nickel plating, or powder coating can provide corrosion resistance and improve the aesthetic appearance of the pulley. Surface treatments like heat treatment or hardening can enhance the pulley’s durability, wear resistance, and load-carrying capacity.

7. Performance Optimization:

Custom drive pulleys can be designed and optimized to maximize the performance of the machinery or equipment. Factors such as speed, torque, power requirements, and system dynamics can be taken into account during the customization process. By carefully considering these factors, the drive pulley can be tailored to achieve optimal power transmission efficiency, minimize energy losses, and enhance overall system performance.

In summary, drive pulleys can be customized to suit the specific machinery and equipment requirements. Customization allows for adjusting the size, dimension, groove profile, material selection, shaft configuration, and incorporating special features or coatings. By customizing drive pulleys, manufacturers can ensure seamless integration, optimal performance, and reliable operation in various industrial applications.

drive pulley

What are the advantages of using drive pulleys for power transmission?

Using drive pulleys for power transmission offers several advantages in mechanical systems. Drive pulleys play a critical role in efficient power transfer and contribute to the overall performance and reliability of the system. Here are some of the advantages of using drive pulleys for power transmission:

1. Efficient Power Transfer:

Drive pulleys provide an efficient means of transferring power from a driving source to driven components. They ensure a solid mechanical connection, allowing for smooth and reliable power transmission with minimal energy losses. By optimizing power transfer, drive pulleys help maximize the efficiency of the system, leading to improved performance and reduced energy consumption.

2. Speed and Torque Conversion:

Drive pulleys, when used in conjunction with belts or chains, enable speed and torque conversion between the driving source and the driven components. By varying the size ratio between the pulleys, different speed and torque relationships can be achieved. This flexibility allows for the adaptation of power output to meet the specific requirements of the driven components, optimizing efficiency and performance.

3. Mechanical Advantage:

Drive pulleys can provide mechanical advantage in power transmission systems. By utilizing different-sized pulleys or multiple pulley arrangements, the mechanical advantage can be increased. This allows the driving source to exert a greater force or torque on the driven components, enabling the system to handle higher loads or resistance. The mechanical advantage provided by drive pulleys enhances the efficiency and capability of the system.

4. Versatility and Adaptability:

Drive pulleys offer versatility and adaptability in power transmission applications. They can be used with various types of belts, cables, or chains, allowing for flexibility in system design. Drive pulleys can accommodate different power requirements, speeds, and load capacities. This versatility makes them suitable for a wide range of industries and applications, from automotive and manufacturing to mining and agriculture.

5. Precise Motion Control:

Drive pulleys, especially when combined with timing belts or chains, provide precise motion control in mechanical systems. The toothed design of timing belts and pulleys ensures accurate positioning and synchronization of components. This is crucial in applications that require precise movement, such as robotics, CNC machines, and conveyor systems. Drive pulleys contribute to the overall accuracy and repeatability of motion control systems.

6. Reduced Slippage and Vibration:

Drive pulleys, particularly those designed with V-grooves or toothed profiles, offer improved grip and reduced slippage between the pulley and the belt or chain. This minimizes energy losses due to slipping and enhances power transmission efficiency. Additionally, the stable engagement between the pulley and the belt or chain reduces vibration, ensuring smoother operation and reduced wear on system components.

7. Easy Maintenance and Serviceability:

Drive pulleys are typically designed for easy maintenance and serviceability. Belts or chains can be easily installed, adjusted, or replaced, allowing for efficient maintenance tasks. Drive pulleys often feature accessible mounting points and adjustment mechanisms, simplifying belt tensioning or alignment procedures. This ease of maintenance reduces downtime, enhances system reliability, and ensures optimal efficiency over the lifespan of the equipment.

In summary, using drive pulleys for power transmission offers advantages such as efficient power transfer, speed and torque conversion, mechanical advantage, versatility, precise motion control, reduced slippage and vibration, and easy maintenance and serviceability. These advantages contribute to the overall performance, reliability, and efficiency of mechanical systems.

China OEM Belt Conveyor Drive Head Bend Take up Snub CZPT Tail Ceramic Rubber Coated CZPT Herringbone Chevron Grooved Lagging Crowned Motorized Drum Pulley for Mining   pulley driveChina OEM Belt Conveyor Drive Head Bend Take up Snub CZPT Tail Ceramic Rubber Coated CZPT Herringbone Chevron Grooved Lagging Crowned Motorized Drum Pulley for Mining   pulley drive
editor by CX